Note

Crustal reflections from the Alpine Fault Zone, South Island, New Zealand

F. J. DAVEY¹
T. HENYEY²
S. KLEFFMANN³
A. MELHUISH¹
D. OKAYA²
T. A. STERN³
D. J. WOODWARD¹
and the South Island Geophysical Transect (SIGHT) Working Group

¹Institute of Geological and Nuclear Sciences
P.O. Box 1320
Wellington, New Zealand

²Institute of Geophysics
University of Southern California
Los Angeles, CA 90089-0740, U.S.A.

³Research School of Earth Sciences
Victoria University of Wellington
P.O Box 600
Wellington, New Zealand

Abstract Initial results from a seismic experiment in the central South Island, New Zealand, have imaged a 40 ± 5° southeast-dipping zone at a depth of c. 22 km beneath the Mt Cook village. It is speculated that this reflector represents the down-dip extension of the Alpine Fault Zone.

Keywords seismic reflection; reverse moveout; dipping reflector; Alpine Fault Zone

INTRODUCTION

During March 1995, a seismic reflection experiment was carried out along the eastern shore of Lake Pukaki (Fig. 1) as the preliminary stage of a multi-year joint United States–New Zealand programme to investigate the Alpine Fault of the South Island of New Zealand. Advantage was taken of a straight and isolated road along the east shore of the lake to carry out a simple seismic experiment, where a 6 km long, 120-channel spread was laid out along the road, and shots of 25 kg were detonated at a water depth of 20 m in the lake. Shots were to the south of the 120-channel spread and offset by up to 4 km from the spread. At the northern end of the lake, the seismic line is c. 45 km from the Alpine Fault and at an azimuth of c. 60° to the strike of the fault.

The major result from the survey is the presence of a lower crustal reflection between 9 and 10 s two-way travel time (twtt) with “reverse moveout” across the shot gathers. The reflection is the subject of this note. A simple interpretation can be made in terms of a uniform half-space over a dipping layer.

Figure 2 shows two shot gathers from the northern end of the line (Fig. 1). An obvious increase in signal amplitudes occurs at the location of peg 1220, and this is considered to relate to a substantial reduction in thickness of the glacial deposits overlying basement at this point (Melhuish et al.
Deep crustal reflections can be seen within the portion of the shot gathers to the north of peg 1220. In particular, there is a strong reflection between 9 and 10 s twtt, which has reverse moveout, and a deeper suite of subhorizontal reflectors starting at 12 s and extending to at least 15 s twtt.

RESULTS

In this note we restrict discussion to the dominant event with reverse moveout between 9 and 10 s twtt (Fig. 2). Reverse moveout is a term describing the arrival of a particular reflection earlier at the farthest geophone of a seismic spread than at the closest. A straightforward explanation for the event recorded at Lake Pukaki is that it is energy returned from a lower crustal layer that has an apparent dip to the south.

The arrival time for a reflection from a planar reflector with dip ϕ is described by a hyperbolic equation given by (Dobrin & Savit 1988, p. 222):

$$T^2 = 4H^2/V_{rms}^2 + X^2/V_{rms}^2 + 4H/V_{rms} \cdot X \sin \phi$$

where $T =$ travel time, H is the perpendicular distance from the reflector to the shot point, and V_{rms} is the"root mean square" velocity between the reflector and the ground surface. X, the offset, is either positive or negative for shooting down-dip and up-dip, respectively.

Figure 3 shows equation (1) plotted for values of X (offset) between 4 and 10 km and for $V_{rms} = 6200$ m/s. This is a reasonable value for V_{rms} of the crust based on the results of a 1983 seismic refraction survey (Smith et al. 1995, this issue). From Fig. 3 it can be seen that the magnitude of reverse moveout across a spread is a reasonably sensitive measure of dip of the reflector for a long offset of 4–10 km. For 20, 30, and 40° dips, the moveout is 216, 366, and 510 ms, respectively. We can measure the reverse moveout on a number of adjacent shot gathers to be 380 ± 20 ms. Thus, our best estimate of the reflector dip is 34 ± 5°.

If the reflection is from the downward projection of the Alpine Fault, then the dip estimate is only an apparent dip given that the azimuth of the seismic spread was c. 60° to the Alpine Fault (Fig. 1). If the seismic line is not in the direction of dip, the angle δ is the apparent dip, which is related to the true dip ϕ by (Dobrin & Savit 1988):

$$\sin (\delta) = \cos (\theta) \sin (\phi)$$

where θ is the angle between the shooting line and the direction in which the reflector dips.

Thus, for $\delta = 34°$, $\theta = 30°$, the true dip ϕ of the reflector is c. 40°. For an out of plane reflector, the apparent normal moveout velocity will be higher than the true velocity. For example, Levin (1971) shows in the simple case of one layer of velocity V overlying a reflector:

$$V_{nmo}/V = (1 - \sin^2 (\phi) \cos^2 (\theta))^{-0.5}$$

For $\phi = 40°$, the ratio V_{nmo}/V will change by c. 10% when θ is changed from 30° to 0°. This change in apparent velocity does not grossly affect the simple analysis produced here.
DISCUSSION

Our interpretation is summarised in Fig. 4. The part of the reflector giving rise to the observed reflections is at a perpendicular depth of c. 30 km from the shot to the reflector, or c. 22 km directly below Mt Cook Village (Fig. 4). When projected upward, the dipping reflector intersects the surface within a few kilometres of the surface trace of the Alpine Fault. Therefore, a straightforward interpretation of the lower crustal reflector is that it effectively represents the down-dip planar projection of the Alpine Fault.

It is not clear if the proposed Alpine Fault reflector is the result of either an acoustic impedance contrast between two different rock types each side of the fault, or to a physical property change within a fault zone that may be several kilometres thick. The latter interpretation is preferred and is in broad agreement with previous studies that have speculated on mineralogical, structural, and geodynamic grounds that a ductile decollement within the garnet-oligoclase grade schist must exist to lower crustal depths (e.g., Sibson et al. 1979; Norris et al. 1990; Grapes & Watanabe 1992). In particular, the high strength of the event (Fig. 2) suggests that fluids in the decollement zone could be contributing to a high acoustic impedance.

Confirmation of our assertion that this deep reflector represents the expression of the Alpine Fault Zone at depth must await further processing of the Lake Pukaki data, three-dimensional modelling, and acquisition of more detailed seismic data from and adjacent to the Alpine Fault.

CONCLUSIONS

A deep crustal seismic experiment at Lake Pukaki has imaged reflections from a depth of c. 25 km which are interpreted to arise from the Alpine Fault. The reverse moveout reflections from 9 to 10 s twtt have originated at a reflecting surface which dips at 40 ± 5° to the southeast and lies at a depth of 22 km beneath Mt Cook Village.

ACKNOWLEDGMENTS

The project involved many people and in particular we acknowledge the contribution of C. O'Reilly and L. Carrington in the field. Land owners along the eastern shore of Lake Pukaki are thanked for their co-operation and patience with our field operations. In particular, thanks are due to D. McKenzie of Braemar Station and D. Burnett of Mt Cook Station. We thank S. Bannister, S. Henrys, and G. Stuart for helpful reviews. This work was supported by contracts between the Foundation for Research, Science and Technology, the Institute of Geological and Nuclear Sciences, and Victoria University of Wellington. Victoria University acknowledges the support of Lottery Grants Board for assistance with the purchase of a seismic recording system for this project.

REFERENCES

